
How Powerful are Interest Diffusion on Purchasing Prediction:
A Case Study of Taocode

Xuanwen Huang
†
, Yang Yang

∗†
, Ziqiang Cheng

†
, Shen Fan

§
, Zhongyao Wang

§

Juren Li
†
, Jun Zhang

§
, Jingmin Chen

§
†
Zhejiang University,

§
Alibaba Group

{xwhuang, yangya, petecheng, jrlee}@zju.edu.cn

{fanshen.fs, zhongyao.wangzy, zj157077, jingmin.cjm}@alibaba-inc.com

ABSTRACT
A Taocode is a kind of specially coded text-link on Taobao.com
(the world’s biggest online shopping website), through which users

can share messages about products with each other. Analyzing

Taocodes can potentially facilitate understanding of the social rela-

tionships between users and, more excitingly, their online purchas-

ing behaviors under the influence of Taocode diffusion. This paper
innovatively investigates the problem of online purchasing predic-

tions from an information diffusion perspective, with Taocode as a
case study. Specifically, we conduct profound observational stud-

ies on a large-scale real-world dataset from Taobao, containing
over 100M Taocode sharing records. Inspired by our observations,

we propose InfNet, a dynamic GNN-based framework that models

the information diffusion across Taocode. We then apply InfNet to
item purchasing predictions. Extensive experiments on real-world

datasets validate the effectiveness of InfNet compared with 8 state-

of-the-art baselines.
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• Information systems → Online shopping; Electronic com-
merce; Social networks.
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1 INTRODUCTION
Online shopping has become an increasingly common practice

for thousands of households. As reported by Alibaba Group1, in
the fiscal year of 2020, the mobile MAUs across the China retail

marketplaces comes to 846 million, and the total GMV of Taobao2

reaches 3,387 billions of CNY. Due to the extremely large scale of

online retail marketplaces, it has become crucial for e-commerce

platforms to better understand users’ online purchasing behaviors.

One classical but challenging problem in this area is that of pur-

chasing predictions [8]: given a user, along with a specific product

or a category of goods, the question is how likely the user would

be to buy this item.

Existing works have made great efforts in this field. Traditional

methods mainly consider users and products by matrix factoriza-

tion, statistical learning models [26], etc. Deep learning-based mod-

els adopt deep neural networks to integrate the diverse information

in the e-commerce system [33, 36, 39, 44], such as users’ clicking,

browsing and purchasing histories. Most of these previous frame-

works utilize the historical information of both users and products;

however, few of them have studied the impact of information diffu-

sion [41, 42] across the social network on users’ online purchasing

behaviors [21, 22, 43]. Taking a concrete example in practice, a user

will be more likely to buy a product at a time when she actually

needs it, or alternatively, when some close friends recommend that

item to her (even though she might not have any urgent demand

for it). Furthermore, such preferences for different products can

spread across online social networks: a user who receives a recom-

mendation from her friends may share this item with other users

within her social circle [28], thus promoting further possible pur-

chases, while the scale of sharing could explode as the message is

propagated throughout the social relationships between users. We

refer to this phenomena as diffusion of user interests in products,

i.e., “interest diffusion” for short, which is likely to influence the

purchasing behavior of users to some degree.

Although such social factors are expected to be highly relevant

to users’ purchasing decisions, they have been rarely studied in

previous works for two main reasons. First, interest diffusion across

online e-commerce platforms is always implicit and hard to observe.
While we can easily obtain users’ browsing, purchasing and prod-

uct review histories, or even discussions on public social media

platforms, the majority of recommendations and interest diffusion

occur between acquaintances via private social communications,

1
See the FY 2020 annual report on https://www.alibabagroup.com/en/ir/reports.

2
the biggest online shopping website in the world that belongs to Alibaba Group.
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Figure 1: An illustration of Taocode diffusion process. When
users browse an item on Taobao (a), they can share its homepage to
friends by generating the Taocode message (b), and sending it via
social media. The Taocode then spread over the social network (c).

which are difficult to discover and analyze. Indeed, previous works

have explored the impact of product sharing on users’ shopping

behavior through analysis of email data [17, 20]; however, the so-

cial cost of using emails to share goods is much higher than using

instant social tools, meaning that these studies may be biased in real-

world scenarios. Second, interest diffusion across social networks

is very complicated to model, since diffusion trajectories change

naturally at any time with the spread of social interactions, and

on online shopping platforms, user interest in different products

could exhibit various diffusion patterns. Modeling the dynamics of

interest diffusion remains a challenging research problem.

Excitingly, Taocode, a kind of specially coded text-link on Taobao,
provides us with an appropriate testbed to observe and capture the

social influences and product interest diffusion between users in the

online shopping scenario. Taocode is essentially a hyper-link con-

taining the information of some specific product on Taobao. Fig. 1
illustrates how the Taocode is created and spread. It is convenient

for users to create and share a Taocode by clicking specific options

in Taobao when they browse an item, and anyone who receives

the Taocode can browse this product by opening the embedded

hyper-link. More importantly, since Taocodes spread within Taobao,
the diffusion process of each sharing message can be recorded in

its entirety; we can trace the explicit sharing path of the item on the

diffusion flow, and obtain the details of which user shares which

product with whom at what time. This provides us with a great

opportunity to model the dynamics of product sharing diffusion.

This paper presents a large-scale study on the effect of product in-

terest diffusion on online shopping platforms, taking Taocodes shar-
ing on Taobao as an example. It is pioneering work from the per-

spective of user interest diffusion to predict item-level purchases.

We sample a total of 100M Taocode sharing records, and then con-

struct the interest diffusion networks from those Taocode records
at different time steps: there is a unique diffusion network within

each single time span, where each node represents a user, and

the directed edges between two nodes denote the relationships of

Taocode sharing. Moreover, the dynamics of the network structures

reveal the message diffusion across the edges, which may reflect the

purchasing preferences of users regarding different groups of items.

Given a specific query of a user-item pair, our goal is to estimate

how likely the user is to buy this product based on purchasing and

Taocode diffusion histories, by utilizing the sequence of interest

diffusion networks during the given time span.

As discussed above, modeling interest diffusion networks re-

mains challenging: it is difficult for deep sequential models to han-

dle geometric data, while most existing GNNs may be unable to

deal with the dynamic edge weights at different times. To deeply

understand how Taocode messages are spread over the social net-

work, we first conduct empirical observations across the entire

Taocode diffusion (Sec. 3), which provides several comprehensive

insights: 1) Taocodes sharing behaviors are indeed highly correlated
with users’ purchasing decisions, in that users who send or receive

more Taocodes are likely to make more purchases; 2) the influence

of Taocode diffusion varies across different product categories, e.g.,

items with higher price index are more likely to be purchased after

being shared via Taocodes; 3) the graph structures of interest diffu-

sion networks reflect users’ purchasing preferences: for instance,

users whose neighbors share Taocodes more actively tend to have

higher purchasing rates; 4) temporal factors play an important role

in Taocode diffusion, i.e., the time interval between Taocode senders
buying and sharing the item has implicit impacts on the receivers.

Motivated by these findings, alongwith the advances of sequence-

and graph-level attentions, we propose InfNet to integrate both the

structural and temporal information of dynamic attributed diffu-

sion networks. The key hints derived from our observations are

that, on one hand, a user’s preference for different items is highly

related with her own and her neighbors’ interest diffusion patterns,

while on the other hand, those patterns are linked with time and are

affected by neighborhoods’ dynamic product interests at different

time steps. In other words, the structural and temporal dynamics

of interest diffusion change in an interrelated fashion, and should

thus be incorporated into a unified framework. Accordingly, we

adopt a multi-level attention mechanism to model the interest dif-

fusion patterns, i.e., two graph attentions on diffusion networks,

and a self-attention-based encoder on diffusion sequences. Exten-

sive experiments applying purchasing predictions to real-world

datasets on Taobao demonstrate the effectiveness of our proposed

model: InfNet significantly outperforms 8 state-of-the-art baselines,

ranging from session-based models to GNN-based social recommen-

dation frameworks. We also conduct ablation studies to determine

how different levels of attention work, and visualize several cases

to illustrate the diffusion patterns of products extracted by InfNet.
Overall, the contributions of this paper can be described as follows:

• We present a large-scale study on the effect of product sharing in

online shopping scenarios, and investigate the problem of online

purchasing predictions from an information diffusion perspective.

More specifically, we take Taocode, a specially coded type of text

link of Taobao, as a case study.
• Comprehensive observations over 100M Taocode sharing records
illustrate several implicit characteristics of product interest diffu-

sion across the social network on Taobao.
• Motivated by our observational insights, we design an end-to-end

framework, named InfNet, to make item purchasing predictions.

Experimental results validate the effectiveness of the way, in

which we adopt multi-level sequential and graph attentions to

capture the users’ preferences for different products and the

interest diffusion dynamics.



2 PROBLEM FORMULATION
To clearly illustrate the proposed framework focusing on the pur-

chasing predictions from the perspective of information diffusion,

we first give the detailed and formal definitions of interest diffusion

based on Taocode sharing and the problem formulation.

We refer to the set of users and products in our dataset from

Taobao as V and P respectively, and further denote 𝑡𝑖 ∈ 𝑇 =

{𝑡1, 𝑡2, · · · , 𝑡𝑛} as the time step; here, 𝑛 is the number of the ob-

served time step, and each 𝑡𝑖 = (𝑡𝑖
𝑏
, 𝑡𝑖𝑒 ) represents a specific period

of time, starting at 𝑡𝑖
𝑏
and ending at 𝑡𝑖𝑒 .

Definition 1. Taocode diffusion. Each Taocode sharing mes-
sage represents a diffusion record, which we formulate as a 4-tuple
𝑑 ∈ D𝑡 = {(𝑢, 𝑣, 𝑝, 𝑡𝑑 ) |𝑢, 𝑣 ∈ V, 𝑝 ∈ P, 𝑡 = (𝑡𝑏 , 𝑡𝑒 ) ∈ 𝑇 }, satisfying
𝑡𝑏 ≤ 𝑡𝑑 ≤ 𝑡𝑒 . Here,𝑢 and 𝑣 denote the receiver and sender respectively
of the Taocode message, 𝑝 is the item that is shared, and 𝑡𝑑 is the time
at which the Taocode is received by 𝑢 from 𝑣 .

Definition 2. Interest diffusion network is a directed attrib-
uted network GD = (V, E,H|D) constructed from a Taocode diffu-
sion setD, where each node𝑢 ∈ V represents an online shopping user
with feature vector H𝑢 , while the edge 𝑒 ∈ E indicates the interest
diffusion messages between users, with the features 𝐻𝑒 denoting the
edge attributes. Formally, there exists an edge 𝑒𝑢𝑣 between two users
𝑢 and 𝑣 , if the tuple (𝑢, 𝑣, 𝑝∗, 𝑡∗) is an element in D for some item 𝑝∗

and timestamp 𝑡∗, and the attribute 𝐻𝑒𝑢𝑣 of the edge 𝑒𝑢𝑣 contains the
detailed information of the product 𝑝∗, e.g., PI, categories, etc.

Definition 3. Dynamic interest diffusion network is a se-
quence of interest diffusion networks G = {G1, · · · ,G𝑛} constructed
from Taocode diffusion setsD = {D1, · · · ,D𝑛}, where 𝑖 indicates the
time step 𝑡𝑖 . For each time step 𝑡 , we collect all Taocode diffusions D𝑡

that occurs during the given time span (𝑡𝑏 , 𝑡𝑒 ) from the data source,
and add edges into the network G𝑡 as described in Definition. 2.

Problem definition. Considering a dynamic interest diffusion

network G, along with a query 𝑞 = (𝑣, 𝑝, 𝑡𝑖 ) that 𝑣 ∈ V, 𝑝 ∈ P, 𝑡𝑖 ∈
𝑇 , the problem we aim to solve is that of determining whether the

user 𝑣 will purchase product 𝑝 within the time span 𝑡𝑖 . Since the

total number of items on an online shopping platform (Taobao.com
in our experiment) is very large, to simplify the problem and in-

vestigate the influence of Taocode diffusion, we implement a re-

striction that 𝑣 should receive Taocode messages containing the

product 𝑝 from some other users during the time span 𝑡𝑖−1. We do

not place limitations on that whether the user 𝑣 has received the

Taocode before 𝑡𝑖−1; thus, both the short- and long-term impact

of Taocode diffusion are expected to be modeled to achieve better

performance. The additional benefit is that the number of possible

queries is significantly reduced, which makes it feasible to conduct

comparison experiments between selected baselines.

3 OBSERVATIONAL STUDIES
In this section, we provide an in-depth examination of a large-scale

dataset of Taocode sharing records from three different perspectives;

this is done to facilitate a better understanding of Taocode diffu-
sion’s intrinsic properties, along with its influences on the users’

purchases.

3.1 Dataset descriptions
The dataset for our observational studies is described as follows:

we sample records of Taocode sharing between Taobao users dur-
ing a specific period of time in 2020. The entire dataset contains

over 100 million Taocode sharing records. Each record consists of

basic information, including: 1) who creates and shares the Taocode,
namely the sender ; 2) who receives the Taocode, namely the receiver ;
3) when the receiver opens the Taocode link, namely the timestamp,
and 4) the details of the item that this Taocode represents, including

its Price Index (PI)
3
and the category it belongs to.

To determine the correlations between sharing and purchas-

ing, we extract the purchasing logs related to the Taocode sharing
records. In fact, there is no explicit evidence to indicate that a user

buys an item as a direct result of receiving the Taocode ; thus, we
adopt the implicit influences of Taocode by collecting the purchas-

ing records of the receiver and the item that each Taocode message

contains, and assume that Taocode sharing is the main reason that

leads to the purchases if the receiver buys that item after receiving a
Taocode within a predefined time span. Note that for the purchasing

predictions, we collect another group of Taocode samples, and the

above-mentioned dataset is only used for the observations, feature

extractions for users and items, along with the Taocode diffusion
network construction. We will introduce the “prediction dataset”

for the purchasing predictions in Sec. 5.

3.2 Taocode’s effect on purchases
The first research question is: Does Taocode diffusion have im-
pacts on users’ purchasing behaviors? (Q1) To directly answer

the question, we introduce the conversion index (CI):

Definition 4. The Conversion Index (CI) of an item 𝑝 is the pro-
portion of its purchasing records to the total, i.e.,

𝑓 ( #(purchasing records of 𝑝)
#(all records of 𝑝)

)

𝑓 is a monotonically increasing scalar function that maps the origin
proportion to another value for data privacy issues. It can be formu-
lated under different conditions: (1) CI of browsing, where records are
browsing histories; (2) CI of Taocode, where records are Taocode mes-
sages. We further denote the ratio of Taocode sharing CI and browsing

CI, i.e., CI(Taocode)CI(sharing) , as CI Lift, to reveal the effect of Taocode sharing

on purchasing behaviors. If an item has a high CI Lift, it is much more
likely that it will be purchased after being shared via Taocode.

We compare the averaged CI of both the Taocode sharing and

product browsing records for all products. The first of our find-

ings is that items shared via Taocode are much more likely to be

purchased: a 31.0% higher CI on average (p-value<0.01) than that

with browsing records alone. Meanwhile, we group the items by

their leaf categories, count the averaged PI among each group, and

compare their CI Lift. As shown in Fig. 2(a), there is a statistically

significant positive correlations between CI Lift and averaged PI

(slope=0.0448, p-value<0.01). The Spearman correlation between

PI and CI Lift is 0.336 (p-value<0.01). In other words, as the item’s

PI increases, its CI Lift becomes higher; i.e., Taocode sharing can

3
Price Index, defined as PI = 𝑓 (price) , reflecting the price level of the product, where

𝑓 ( ·) is a monotonically increasing non-linear scalar mapping due to privacy concerns.



(c) Effect of neighbors(a) CI Lift vs. PI (b) Effect of Structure (d) Effect of Cascade

Figure 2: Observational studies on Taocode diffusion. (a) illustrates the positive correlations between the PI and CI Lift of items, indi-
cating that Taocode has a stronger influence over expensive goods. Both (b) and (c) reflect the structural properties of Taocode diffusion; for
example, the numbers of Taocode messages being sent and received by a user and her neighbors would affect her purchasing behavior. (d)
finds that Taocode messages could have a long-term impact on users’ purchases.

further promote its purchase rate, which indicates that when buy-

ing expensive goods, users often engage in more consultation be-

fore making a final decision. As the only condition we control is

that of whether the products are shared via Taocode, we conclude
that Taocode diffusion does indeed affect users’ purchasing
behaviors: users will be more willing to make a purchase if they

receive the Taocode message from someone else.

3.3 Structural dynamics of Taocode
We next investigate how Taocode affect the purchases in the fol-

lowing two subsections, starting with the following question: Are
there any structural characteristics of Taocode diffusion pat-
terns? (Q2)Wefirst examine the structural properties of Taocode dif-
fusion networks. We merge all edges among each dynamic interest

diffusion network G𝑡 at every time step 𝑡 into one graph G, and
calculate the sum of the in and out degree with respect to differ-

ent item categories for each user. Since more than 80% users have

a degree between 1 and 9, and the degree distribution exhibits a

long-tail shape, we only count Taocodes where the degrees of both
sender and receiver lie between 1 and 9. The results are shown in

Fig. 2(b): the average CI of all Taocode records is 19.0, reaching a

maximum of 22.7 when the sender’s degree is 9 and the receiver’s is

1, and 20.9 when the degrees of the sender and receiver are 1 and 9

respectively. It is consistent with previous findings in the literature

that “consumers who are central in networks are quite suscepti-

ble to others’ influences” [19]. However, CI of Taocodes where the
degrees of both sender and receiver are 1 or 9 are only 17.2 and

17.9 ( much lower than average). Contradicting the initial assump-

tion that Taocode sharing between high degree users would have a

higher CI, we find that when the gap of degrees between the sender

and receiver is larger, CI becomes higher. This may be explained

by noting that a user’s online purchases are likely to happen more

frequently if she interacts socially with another user who has a

very different pattern of social behaviors. For example, if a user 𝑢

who often shares products with others, sends a Taocode message to

user 𝑣 that who uses Taocode relatively infrequently, one possible

motivation for this sharing is that the item is of urgent demand for

𝑣 ; thus, 𝑣 is more likely to make a purchase than usual.

Next, we investigate the influence of the receiver’s neighbors

in the Taocode diffusion. More specifically, for a Taocode message

(𝑢, 𝑣, 𝑝, 𝑡), we look at 𝑣 ’s 1-hop neighbors who have received and

bought the same product 𝑝 , denoted as close neighbors. The intu-
ition here is that, the number of close neighbors of the receiver

can reflect the popularity of the item during the diffusion flow to

some degree. We group Taocode records by the number of close
neighbors of the receivers, and compare their average CI across

different product categories, as illustrated in Fig. 2(c). We find that,

in general, the more close neighbors the receiver has, the more

likely it is that the receiver will buy the item; i.e., the average CI

increases from 18.8 to 25.3 as the 𝑥-𝑎𝑥𝑖𝑠 becomes large. We can

therefore conclude that users would have a higher CI on an item

if many of their neighbors are in the diffusion flow of this prod-

uct, (i.e., receive the Taocode message of this item and buy it). Our

observations are consistent with [17], who found that users with

social connections may have similar shopping behaviors. In con-

clusion, the network structure of interest diffusion networks
may help us in modeling user purchasing behaviors.

3.4 Temporal dynamics of Taocode
Finally, we tackle the temporal dynamics of Taocode diffusion:

Does the senders’ past receiving history do have impact on
receivers’ purchasing? (Q3)

In the literature, a diffusion cascade can be defined as a infor-

mation flow, as item 𝑝 flows by 𝑢1->𝑢2->𝑢3->...->𝑢𝑘 . To simplify

the diffusion process, we only look at the 2-hop cascades that end

with the user 𝑢3 in the above example. For convenience of explana-

tion, we refer to the target user as 𝑢3, and his/her 1-hop and 2-hop

neighbor on an in-edge of a diffusion path as𝑢2 and𝑢1 respectively.

We aim to figure out 1) Does the 1-hop neighbor(𝑢2)’s receiving

records have impact on the receiver(𝑢3)’s purchasing and 2) How

does the impact changes over time?

We present the observational result in Fig. 2(d), where x-axis 𝛿

donate the time gap(weeks) between the time when 𝑢2 received

the same Taocode and the current Taocode sent to 𝑢3, note that if
𝑢2 does not receive the same Taocode before, the 𝛿 is set to 0. while

y-axis donate the conversion index. The first of our finding is that the
average CI of Taocode with 𝛿 = 0 (no 2-hop neighbors) is 19.1±4.32,
which is lower than the case when 2-hop neighbors exists(𝛿>0).

Moreover, there are no significant differences in the averaged CI

between different time gaps 𝛿 : the results of remaining groups

(𝛿 = 2, 3, 4 weeks) are in 19.5±4.49, 19.2±4.59, and 19.99±4.16 re-
spectively. However when it comes to the case in which the sender

buys the item later (the blue bars), we can observe that the average



CI is much higher than that of the red bars, even if the previous

Taocode sharing occurs more than four weeks ago (20.4±4.07, vs.
19.99). This suggests that both the long- and short-term tem-
poral dynamics of Taocode diffusion do indeed exist. This is
consistent with the common-sense conclusion that (1) the more

frequently Taocode messages are spread within a short time span,

the more likely it is that the item has great popularity with a higher

CI; (2) alternatively, a user 𝑢 will probably share some product

with others long after she receives, and after spending some time

making sure that the item deserves the recommendation. Thus,

the temporal dynamics of Taocode diffusion could be an important

factor in influencing user purchasing behaviors.

4 MODEL: INFNET
In this section, we introduce the proposed model InfNet for mod-

eling the structure and temporal dynamics of Taocode diffusion in

the interest diffusion networks. Given the input of a purchasing

query at a specific time step that contains the target user and item,

our framework first builds a sequence of “dynamic sub-networks”

for each query, after which we apply two different attention-based

aggregation strategies on dynamic node and edge attributes to learn

users’ hidden representations. Finally, the user’s embedding, along

with the item features are fed into the outer classifier, to predict

whether the target user will purchase the item during the given

time span. An overview of the framework is presented in Fig. 3.

4.1 Preprocessing: Sub-graph construction
For each purchasing query 𝑞 = (𝑢, 𝑝, 𝑡𝑖 ) and the entire dynamic

interest diffusion network G = {G1, · · · ,G𝑡𝑖 }, we build a sequence

of sub-graphs G𝑞 of G to conduct the end-to-end graph classifi-

cation, i.e., the purchasing prediction of query 𝑞. The process of

constructing the sub-networks can be described as follows :

• Seed node sampling: We define the target user 𝑢 and its 1-hop

neighborsS𝑢 (𝑝) as the set of seed nodes, denoted as {𝑢}
⋃S𝑢 (𝑝),

where S𝑢 (𝑝) is the set of sender nodes that shares item 𝑝 with 𝑢.

• Sub-network construction: Given the set of seed nodes, we

adopt a breadth-first search (BFS) strategy to sample the nodes

from each original diffusion network G𝑡 (1 ≤ 𝑡 ≤ 𝑡𝑖 ), by search-

ing for two-hop neighbors, i.e., the search deepth is set to two;

and moreover, an edge exists between two nodes (𝑢, 𝑣) in G𝑞𝑡 if

the user 𝑢 shares some product 𝑝 with 𝑣 at time step 𝑡 .

• Node and edge attributes: The node features of a user 𝑢, de-

noted as Attr(𝑢), consists of two parts: the first part is the user’s

purchasing histories which are independent from the diffusion

networks, i.e., the price she pays for different products in the

past year; the other part is a one-hot vector, indicating whether

this node is the target user in the query or it is among the seed

nodes, which can help the model better identify the nodes that it

should focus on. As for the edge features, we first define the item

feature Attr(𝑝) as a one-hot vector, where each bin represents a

specific range of prices. Then for an edge (𝑢, 𝑣, 𝑡), its features 𝑒𝑡𝑢𝑣
is summed over features of all items that are sent from the user

𝑢 to 𝑣 during the period 𝑡 . Note that edge features may change

across queries at different time, since for a specific time span 𝑡 ,

we only aggregate features of items that are shared during 𝑡 .

4.2 Structural block
As Fig. 2 (b) shows, the local graph structure in the diffusion network

is an important factor to infer whether Taocode sharing can prompt

purchases. Therefore, we use a Structural block to learn the users’

embeddings to capture such structural characteristics. Structural
block can be implemented by any GNNs with node aggregation

strategy, which can embed nodes’ structural information [40]. It

can be denoted by a uniform Message-Passing framework: for a

specific user 𝑢, the first layer is a non-linear transformation on user

attributes, and output the initial hidden representation 𝑥𝑢 :

𝑥𝑘𝑢 = Combine(𝑥𝑘−1𝑢 ,Aggr(𝑥𝑘−1𝑣 |𝑣 ∈ N𝑢 )) (1)

where 𝑘 is the layer index, Combine(·, ·) combines hidden states of

𝑢 with her neighbors, and Aggr(∗) denotes the aggregation function
(sum or mean operation). By this step, the representation vector 𝑥𝑘𝑢
is expected to contain the information of both 𝑢 and her neighbors.

After stacking 𝐾1 layers of Eq. (1), the output is the final structural

embedding of the user 𝑢, denoted as 𝑠𝑢 = 𝑥
𝐾1
𝑢 .

4.3 Diffusion block
While Structural block only aggregates on the node attributes, edge

features encode much more information of Taocode diffusion: as
Fig. 2 (c) and (d) suggest, if we want to better predict the user 𝑢’s

purchasing decision on the item 𝑝 , we may need to know howmany

close neighbors of 𝑢, as well as whether there exist some users who

have shared 𝑝 to 𝑢 having purchased this item. Moreover, the tem-

poral information of Taocode diffusion can also help us capture both
short- and long-term influence of such social interactions on users’

purchasing behavior. However, existing methods rarely consider

the dynamic item diffusion among users: most of them apply frame-

works similar to Eq. (1), which is unsuitable for a Taocode diffusion
network. Consider a situation, in which user 𝑣 has received many

Taocodes of computers and clothes, and sends a clothing Taocode to
𝑢. The diffusion from 𝑣 to𝑢 pertains only to clothes; therefore, node

information of 𝑣 related to computers may evidently introduces

noise that hampers the prediction of 𝑢’s purchase behavior. So we

further design Diffusion block to fully model the Taocode diffusion
via edge-level aggregations and learn users’ final representations.

Inspired by real-world situations and our observations (Sec. 3),

we design a special multi-layer aggregation strategy. The key idea

is that, rather than directly aggregating neighbors’ node features,

we first learn the weight of each edge, then aggregate the edge

features between the user and her neighbors to get an updated

representation. Through the attention mechanism, neighbors’ node

representations will affect the nodes’ final representation in an

implicit way, and it can avoid noisy aggregations.

Formally, let 𝑒𝑡𝑢𝑣 denotes the edge feature of user 𝑣 sent to user

𝑢 at time 𝑡 . To capture the dynamics of Taocode, we independently
aggregate the attributes of edges connected with the user to get

the hidden state of each time step, denoted as ℎ′𝑢
𝑘,𝑡

, where 𝑘 is the

layer number. Each hidden state ℎ′𝑢
𝑘,𝑡

only contains all interplay

on social networks involving 𝑢. We then utilize a sequence encoder

to combine users’ hidden states in different time steps to get the dy-

namic representations of users. In detail, the same user at different

time step has the same initial hidden state ℎ
0,𝑡
𝑢 , which is obtained

by a non-linear transformation of user attributes Attr(𝑢); then for
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Figure 3: Framework of InfNet. (a) is the overview of InfNet, (b) is the framework of diffusion encoder in InfNet. (c) is the detail of edge-level
aggregation. Note, in (c), user’s hidden states only used to count attention weight.

user 𝑢 in 𝑘𝑡ℎ layer at time step 𝑡 , we conduct separate aggregations

of users’ in- and out-edges and obtain two representations 𝐼𝑛
𝑘,𝑡
𝑢

and 𝑂𝑢𝑡
𝑘,𝑡
𝑢 . They represent the information users receive and send.

We combine them to get the hidden state ℎ
′𝑘,𝑡
𝑢 at time step 𝑡 :

𝐼𝑛
𝑘,𝑡
𝑢 =

∑
𝑣∈S𝑡

𝑢

ATT
𝑘
𝑖𝑛 (ℎ

𝑘−1,𝑡
𝑢 , ℎ

𝑘−1,𝑡
𝑣 , 𝑒𝑡𝑢𝑣)𝑒𝑡𝑣𝑢 (2)

𝑂𝑢𝑡
𝑘,𝑡
𝑢 =

∑
𝑣∈R𝑡

𝑢

ATT
𝑘
𝑜𝑢𝑡 (ℎ

𝑘−1,𝑡
𝑢 , ℎ

𝑘−1,𝑡
𝑣 , 𝑒𝑡𝑣𝑢 )𝑒𝑡𝑣𝑢 (3)

ℎ
′𝑘,𝑡
𝑢 = [𝐼𝑛𝑘,𝑡𝑢 ,𝑂𝑢𝑡

𝑘,𝑡
𝑢 ] (4)

Here ATT
∗
∗ (∗) is an attention function that takes the user’s hidden

states in the last layer, as well as edge attributes as inputs, and

output the attention weights of the edge attributes. It fuses these

three inputs, then employs a non-linear transformation to obtain

the scalar values. The attention mechanism can be clarified as:

𝑤
𝑘,𝑡
𝑢𝑣 = LeakyReLU(𝑊 𝑘

𝑖𝑛 [ℎ
𝑘−1,𝑡
𝑢 , ℎ

𝑘−1,𝑡
𝑣 , 𝑒𝑡𝑢𝑣]) (5)

ATT
𝑘
𝑖𝑛 (ℎ

𝑘−1,𝑡
𝑢 , ℎ

𝑘−1,𝑡
𝑣 , 𝑒𝑡𝑢𝑣) =

𝑒𝑥𝑝 (𝑤𝑘,𝑡𝑢𝑣 )∑
𝑐∈S𝑡

𝑢
𝑒𝑥𝑝 (𝑤𝑘,𝑡𝑢𝑐 )

(6)

where𝑊 𝑘
∗ ∈ R1×3𝑐 , and we adopt a softmax function [31] on edges

to make the summed weights of all 𝑢’s neighbors equal to 1. This

operation can alleviate over-fitting and facilitate fair comparison of

various edges. The out-edge attention is the same as that of in-edge,

except that in Eq. (6), it is summed over R𝑡𝑢 rather than S𝑡𝑢 .
After obtaining the hidden state at each time step 𝑡 , i.e., a se-

quence of representations of different time steps for each user 𝑢,

we use a sequence encoder to capture the temporal dynamics:

ℎ
𝑘,𝑡
𝑢 = Enc(ℎ′𝑘,𝑖𝑢 |𝑖 <= 𝑡) (7)

The Enc(∗) can be a simple operator such as Mean-pooling or a

more complex operator such as GRU [3], Masked self-attention [30],

etc. However, as this aspect is not our main focus, here we do not

expand on it in detail, and will analyze the performance of different

encoding methods in Sec. 5.

After 𝐾2 layers of Diffusion block, we obtain the final dynamic

representation 𝑑𝑢 = Readout(ℎ𝐾2,𝑡
𝑢 |𝑡=𝑡𝑖

𝑡=1 ), where Readout(∗) de-
notes readout the overall representation of sequence. For example,

we can directly readout the representation in last time step in

GRU [3], or readout by sum with weights in Self-Attention [5].

4.4 Model learning
After we obtain the users’ structural and Taocode diffusion represen-
tations, we combine them to predict the users’ purchasing behavior:

whether user 𝑢 will purchase item 𝑝 , namely query 𝑞 = (𝑢, 𝑝). We

focus not only on 𝑢’s representation and item 𝑝’s attributes, but

also consider the users who send item 𝑝 to 𝑢:

𝑔𝑞 =
∑

𝑣∈S𝑢 (𝑝)
[𝑠𝑣, 𝑑𝑣] (8)

Here S𝑢 (𝑝) is the set of seed users (Sec. 4.1), in which all users are

𝑢’s neighbors who send item 𝑝 to 𝑢. We then combine these three

parts and make the predictions through a simple output layer:

𝑦′ = 𝜎 ( [𝑑𝑢 , 𝑠𝑢 , 𝑔𝑞,Attr(𝑝)]) (9)

where Attr(𝑝) denotes the features of item 𝑝 .

In general, the downstream task can be regarded as a binary clas-

sification problem, thus we use cross-entropy as the loss function:

L(Θ) =
∑
𝑞𝑖 ∈𝑄

−𝑦𝑖 log𝑦′𝑖 + (1 − 𝑦𝑖 )log(1 − 𝑦′𝑖 ) (10)

Here, Θ denotes all learnable parameters in InfNet, 𝑄 is the set of

all queries, and 𝑦𝑖 is the ground truth of the query 𝑞𝑖 .

5 EXPERIMENTS
5.1 Experimental setup
Prediction Datasets. We select Taocode sharing messages from

six categories for our experiments. In more detail, in order to for-

mulate the purchasing prediction problem with clear input and

avoid data selection biases, we collect 30,000 Taocode records for
each category on each day during the three days following the ob-

servational time window in Sec. 3, with a total of 540,000 samples,

referred to as “the prediction datasets”.
We regard the receiver and the item of each Taocode record as a

purchasing query 𝑞, which asks whether the user will buy this item

within a specific time span. We then inquire into the purchasing

logs during the time period to label these queries (i.e., whether

or not the user will buy the item). For each query sample, the



Table 1: Statistics of the prediction datasets. Due to data secu-
rity requirement, we rename the categories into ranked ids.

Category # Users # Items # Edge # Purchase

Cate#1 1,261,486 33,184 2,730,610 21,633

Cate#2 1,289,775 38,776 2,832,443 29,538

Cate#3 664,732 5,196 1,396,300 80,278

Cate#4 997,957 19,632 2,160,293 11,657

Cate#5 891,134 74,487 1,911,424 9,181

Cate#6 1,267,316 47,920 2,806,235 41,008

All 6,372,400 21,9195 13,837,305 122,739

input for our model is the dynamic diffusion sub-network defined

in Sec. 4.1, within the given time period. More specifically, we

divide the whole time span into four equal segments, meaning that

there are a total of four diffusion sub-graphs constructed for each

query with one week as a time step. To keep the offline experiment

consistent with the online situation, where we could not obtain any

information ahead of the querying time when making predictions,

we randomly split the datasets on the first two days into training

and validation sets with a ratio of 7:3, with all queries on the third

day are used for testing. Overall statistics of the datasets for the

item-level purchasing prediction task are presented in Table 1.

Baselines. We compare our proposed model, InfNet, with several

groups of state-of-the-art baselines:

• Traditional methods. We first compare our model with a clas-

sical machine learning method: Logistic Regression (LR) based

on feature engineering. We also choose one of the most popular

frameworks in the item predictions, Bayesian Personalized Rank-

ing (BPR) [23], which proposes a maximum posterior estimator

as the generic optimization criterion for personalized ranking.

• Session-based methods. Another line of online purchasing predic-

tions works are the session-based models. Since Taocode message

sharing sequence can be naturally regarded as user actions within

a session, we choose three popular session-based baselines: SR-

GNN [38], MGNN-SPred [33] and GCE-GNN [35].

• Social recommendation methods. To verify the effectiveness of

InfNet in capturing social dynamics across the interest diffusion

networks, we compare three popular social recommendation

frameworks: EATNN [2], GraphRec [7] and DiffNet [36]. EATNN

introduces attention mechanisms to model users’ preferences and

assigning a personalized transfer scheme for each user. GraphRec

incorporates user-item and user-user graphs, and uses attentions

to model the importance of different social relationships. DiffNet

considers the social diffusion by applying GCN [16] on the social

networks and SVD++ to the item recommendations.

Evaluation metrics and implementation details. We evaluate

the predictive performance of InfNet and baseline methods in terms

of AUC for the Precision-Recall (PR) and ROC curves, as these

metrics are widely applied in recommendation systems [4].

In order to fairly compare the performance of different models,

and to adjust to our problem settings, we make some modifications

to the deployment of baselines:

• LR based on feature engineering. We carefully extract three cat-

egories of features: (1) cost-related features, which contain the

price of the product in the query and the total spending of the

user in the past 30 days; (2) graph-related features, which con-

tains the in- and out-degree of users in the diffusion network;

(3) features of users’ historical Taocode sharing records, i.e., the
information about products the user has shared and received.

• Session-based methods. We regard users’ Taocode sharing records
during the given time span as a session (these are used to extract

node and edge features in InfNet), then add the price-related

features when encoding the item information as a one-hot vector.

• Social-based recommendations. For all GNN-based models, the

input is the static interest diffusion network by aggregating all dy-

namic sub-networks in InfNet, which are constructed from users’

previous sharing records.Moreover, since above-mentionedmeth-

ods are based on static graphs and features, to fairly compare

their performance with InfNet, we design the InfNet-S, where
all user and item features are completely consistent with the

social-based recommendation baselines.

Besides, we use the Adam [15] optimizer with a learning rate

of 0.001, and the batch size is set as 512. In InfNet, we search the

hidden sizes 𝑐 in the range [16, 32, 64, 128], and 𝑐 = 64 reaches the

best performance. For the GNNs in Eq. (1), we have tried GIN [40],

GCN [16] and GAT [31]. We find that there are little differences

on the performance of different GNNs models, and choose GAT

whose average performance is the best among all candidates. For

the sequence encoder in Eq. (7), we select Masked Self-Attention

(Sec. 5.3), where the Readout function is similar to [31].

5.2 Experimental results
We present the performance of all methods on item-level purchas-

ing prediction task on the Taocode dataset in Table 2. Overall,

InfNet achieves the best performances on all six categories: InfNet is
expected to be able to capture the spread of product interests along

with both structural and temporal dynamics of Taocode diffusions,
and brings in an averaged relative performance increase of 4.6% and

6.3% in terms of AUC_PR and AUC_ROC respectively compared

with the best baseline method, demonstrating the effectiveness of

our approach for purchasing predictions:

• In detail, although BPR only utilizes the information of user-item

interactions while LR infers purchasing behaviors using only the

user and item features, their performances are competitive with

many baselines, which indicates that handcrafted features are

crucial in item-level purchasing predictions.

• Most of the session-based methods focus primarily on the correla-

tions between items across different time steps. However, due to

the huge number of possible action sequences (Taocode sharing)
within a session, this group of methods could be easily over-fitted

on the training set, and they also ignore some key properties of

users’ purchasing behavior. And when the scale of the dataset

is relatively large (Cate#1, #2, #5 and #6), session-based models

achieve only a limited improvement over LR and BPR.

• Social recommendation methods are the most appropriate to

our experimental setting, and most similar to InfNet, as they not

only consider the user-item interactions but also model the so-

cial dynamics among users. For instance, EATNN uses a whole

data-based optimization strategy for neural models, GraphRec

constructs both item-item and user-user graphs based on users’



Table 2: Experimental results of item-level purchasing prediction tasks. We use ∗ to denote the best result among all models, while
an underline indicates the best performance among the baseline methods.

Methods
Datasets Cate#1 Cate#2 Cate#3 Cate#4 Cate#5 Cate#6

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

LR 0.607 0.310 0.565 0.371 0.523 0.048 0.641 0.200 0.636 0.152 0.567 0.479

BPR 0.599 0.317 0.550 0.367 0.598 0.057 0.614 0.164 0.562 0.134 0.549 0.492

SR-GNN 0.600 0.318 0.569 0.382 0.599 0.059 0.603 0.187 0.558 0.126 0.558 0.495

MGNN-SPred 0.604 0.319 0.554 0.370 0.573 0.054 0.637 0.190 0.559 0.126 0.567 0.514

GCE-GNN 0.615 0.330 0.573 0.389 0.613 0.064 0.655 0.206 0.561 0.127 0.569 0.515

EATNN 0.508 0.246 0.512 0.340 0.508 0.042 0.507 0.120 0.512 0.107 0.505 0.450

GraphRec 0.547 0.277 0.562 0.375 0.542 0.048 0.623 0.171 0.573 0.132 0.515 0.474

DiffNet 0.639 0.357 0.582 0.392 0.612 0.071 0.687 0.233 0.654 0.187 0.612 0.598

InfNet-S 0.650 0.368 0.620 0.428 0.587 0.065 0.669 0.240 0.704 0.244 0.635 0.578

InfNet 0.671* 0.409* 0.644* 0.466* 0.643* 0.100* 0.726* 0.319* 0.742* 0.323* 0.657* 0.606*

Table 3: In-deep analysis on InfNet. “-” means we remove the corresponding part in InfNet. The reported metric is AUC_PR.

Analytical Category Variant Cate#1 Cate#2 Cate#3 Cate#4 Cate#5 Cate#6

None 0.393 0.460 0.091 0.312 0.292 0.597

(a) Sequence Encoder Selection

Mean-Pooling 0.402 0.464 0.086 0.308 0.313 0.603

GRU 0.403 0.466 0.094 0.316 0.322 0.606

-User feature 0.407 0.464 0.086 0.297 0.305 0.599

(b) Effect of Taocode. -Item feature 0.399 0.456 0.092 0.289 0.290 0.578

-Taocode feature 0.355 0.406 0.079 0.282 0.236 0.577

(c) Attention mechanism. -Attention 0.399 0.456 0.092 0.289 0.290 0.578

(d) Structural encoder -Structural block 0.403 0.464 0.085 0.313 0.318 0.587

InfNet 0.409 0.466 0.100 0.319 0.323 0.605

social interactions, and DiffNet uses a fuse layer to combine users’

and items’ features, then apply GCN to model the interest diffu-

sion in the social network. However, EATNN and GraphRec only

consider the structural properties of Taocode diffusion networks

while ignore the attributes on nodes and edges, which may lose

toomuch information of Taocodemessages. Furthermore, EATNN

aims to rank all items for each user without negative sampling,

bringing in performance drops on purchasing predictions of each

single item. Although DiffNet achieves the best performance

among all baselines, it does not consider the different influence

of a user on her different neighbors, as well as the various impacts

of Taocode records with different items. Therefore, those social

recommendation methods cannot make accurate predictions on

item-level purchases based on Taocode diffusion.

5.3 In-depth analysis of InfNet
InfNet consists of a structural encoder based on a node-aware GNN,

and a dynamic Taocode diffusion encoder with attention-based edge

aggregations and a sequence encoder. To investigate whether these

encoders or attention mechanisms actually work and how they

influence the performance of InfNet, we conduct ablation studies

by removing each part of key component, and evaluate the perfor-

mances of these variants of InfNet in Table 3:

• Sequence Encoder Selection. We adopt Masked Self-attention

as the sequence encoder in Eq. (7), where elements in each time

step are encoded only with reference to the previous time steps.

Besides, there are many other deep architectures designed to

encode sequences, such as RNN-based methods. In order to ver-

ify the influence of self-attention, we compare with the model

replacing with GRU. In addition, to validate the necessity of se-

quence encoding, we further compare our methods with simple

Mean-Pooling or even None (use only the output of last time

step without any encoder). According to the results shown in

Table 3(a), it is important to capture the temporal dynamics at

different time steps by a sequence encoder, and simply using

mean-pooling is unable to capture long- and short-term depen-

dence, thus it cannot achieve a good performance on some time-

sensitive categories (Cate#3 and #4). We choose Self-Attention

because it is better at capturing long-term dependencies and

achieves superior performance than GRU.

• Effect of Taocode. In order to intuitively demonstrate the im-

portance of Taocode , we remove different part of input features.

As shown in Table 3(b), masking Taocode features results in the

sharpest drop in performance. This indicates that Taocode is a
key factor to predict users’ purchasing behavior, so InfNet can
model Taocode diffusion better for purchase prediction.



• Attention mechanism. In Eq. (2) and Eq. (3), InfNet assigns
dynamic weights to each edge via graph attentions. In order to

clarify the importance of the attention mechanism, we draw a

comparison between InfNet and its variant without attention. As

Table 3(c) shows, the performances of InfNet-Attention are worse

on all six categories. with a maximum drop of 10.2% on Cate #3.

Therefore, we conclude that the attention mechanism is essential

for modeling Taocode interest diffusion.
• Structural encoder. Structural block is designed to encode user’s
structural information. To evaluate whether this module can help

us infer users’ purchase behavior, we compare with InfNet with-
out this component. Again, as in Table 3(d), removing Structural
block leads to a 2.3% decline in performance.

To summarize, according to the above discussions: (1) The sequence

encoder is a necessary component, and self-attention is the best

choice for InfNet. (2) Taocode is the most informative among the

three input features of InfNet. (3) Attention mechanism can help

InfNet better model Taocode interest diffusion. (4) Structural infor-
mation also benefits in improving the proposed model.

Table 4: Comparison on cold-start problem. C# is short for
Cate# and using bold to highlight the better improvement.

Group Method C#1 C#2 C#3 C#4 C#5

Cold.
DiffNet 0.331 0.332 0.061 0.159 0.143

Ours 0.392 0.381 0.113 0.230 0.276

Impv. 18.4% 14.8% 85.2% 44.7% 93.0%

Warm.
DiffNet 0.358 0.396 0.074 0.244 0.188

Ours 0.410 0.472 0.086 0.329 0.329

Impv. 14.5% 19.2% 16.2% 34.8% 75.0%

5.4 Cold-start challenge
As we observed in Sec. 5.3, Taocode features are important for pur-

chase predictions. To further verify the power of InfNet, we conduct
an analysis on the challenge which traditional recommendation

system suffered, namely the cold-start problem [25]. There are

two distinct categories of cold start: product cold-start and user

cold-start, while here we focus on user cold-start problem.

In our setting, we denote Cold for the group of users who have

no purchase records in the past and Warm on the contrary. We

then compare InfNet with DiffNet (the best baseline), shown in

Table 4. Although bothmodels suffer in cold-start dilemma (perform

worse under the Cold setting compared withWarm), InfNet shows a
better improvement than DiffNet with cold-start. More specifically,

except for Cate#2, InfNet ’s improvements over DiffNet on Cold are

significantly higher than that of Warm, It shows that InfNet is a
potentially better approach to tackle the cold-start problem.

6 RELATEDWORK
Purchase prediction in the recommendation system. Online
shopping has been investigated since the early stages of the Web.

Purchase behavior prediction in e-commerce is a classic but difficult

problem. Many previous works studies online shopping behaviors

based on features of users and products [17, 20, 26], such as item

price and user credit records, etc. Besides, traditional collaborative

filtering [24] and deep learning techniques are used to predict the

probabilities of which item will be purchased by the user. Some

of them try to extract the implicit correlations between users and

items [10, 11, 18, 34]. Another kind ofmethods focus on the click and

purchase records of users, which treat the click/purchase records

as a sequence and encoding them with a sequence encoder such

as RNNs [12], and GNNs [33, 35, 38]. The goal of these methods is

digging out the regular pattern of item purchases.

Social recommendations. Due to the potential value of social

relations and user interactions in the recommendation systems,

social recommendation has attracted increasing attention [29]. As

theories from the domain of social science show the homophily

and influence [1] between social relations, various approaches are

proposed to build social recommendation systems such as trust

ensemble [21], trust SVD [9], and social regularization [22]. More

recently, deep learning methods as well as transfer learning [2] and

GNNs [7, 36, 37, 39] are also adopted to solve the problem.

Deep learning on graphs. Recently, GNNs have achieved state-

of-the-art performance on many tasks [16, 31, 32, 40]. Based on

the Message-Passing framework, many works have expanded the

capabilities to tackle different types of graph, such as heterogeneous

graphs [14] and dynamic graphs [13, 45]. These improvements

make GNNs better compatible for purchase prediction in real-world

applications [6, 27].

7 CONCLUSION
This paper investigates the influence of information diffusion on

user purchasing behaviors in an online shopping platform. Taking

Taocode as a case study, we collect a large-scale real-world dataset

that includes over 100M Taocode sharing records. Based on the

dataset, we conduct empirical observations to explore the intrin-

sic properties of product interest diffusion on Taobao, finding that
Taocode diffusion exerts a strong influence on user purchasing be-

haviors, while both structural and temporal dynamics of diffusion

networks play a key role in such correlations. Inspired by these

observational insights, we design an end-to-end GNN-based frame-

work, dubbed InfNet, to model the product interest diffusion via

Taocode. More specifically, we apply both graph- and sequence-level

attention mechanisms to capture the dynamics of user interests on

different products at different time steps. On the item-level pur-

chasing prediction task on the real-world Taocode diffusion datasets

from six different product categories, InfNet achieves significantly
better performance compared with state-of-the-art baselines; more-

over, ablation studies demonstrate the additional predictive power

introduced by the careful design of our structural and temporal

components. We hope this work will bring insights for user pur-

chase behavior modeling, especially from the perspective of user

interest diffusion and social interactions.
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